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Uncertainty Quantification
using Probability

 What does probability mean?
 General agreement on probability axioms (e.g. as

stated by Kolmogorov in 1933) but they are
devoid of any meaning

 Common interpretation is that P(A) denotes the
relative frequency of an “inherently random” event
A “in the long run”

 “Inherently random” is poorly defined, cannot be
proved and limits domain of applicability, e.g. is
“probability of a model” meaningful?
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Probability Logic

 Alternative interpretation of probability
(e.g. P.S. Laplace, H. Jeffreys, R.T. Cox, E.T. Jaynes)
 P(b|a) = measure of how plausible  proposition b is,
conditional on information in proposition a
 It extends Boolean propositional logic to allow quantification

of plausible reasoning when information is missing
 No division into aleatoric vs epistemic uncertainty – it’s all

epistemic!
 Probability models are viewed as (lack of) knowledge models

to cover missing information, not something approximating
“true probabilities” for real phenomena

a b!a b!
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Probability Logic (Cont.)

 By enforcing consistency with Boolean logic, Cox derived
axioms for probability logic (Cox, 1946, 1961; Jaynes
1983, 2003):

For any propositions a, b and c,
 P1: P(b|a)≥0                              [By convention]
 P2: P(~b|a)=1- P(b|a)                 [Negation Function]
 P3: P(c&b|a)=P(c|b&a)P(b|a)    [Conjunction Function]
 These axioms and De Morgan’s Law imply Disjunction

Function:
P(c or b|a) = P(c|a) + P(b|a) - P(c&b|a)
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Probability Logic (Cont.)

 Kolmogorov’s axioms for finite-set probability measure
can be derived from those of probability logic
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Model Validation

 Since any deterministic model only approximates real
system behavior, cannot strictly validate a model

 Must allow for uncertain prediction error and use system
data to update probability distribution on this

 Soft validation: e.g. is updated prediction-error variance
acceptable?

 Must also allow for uncertain parameters in model
- leads to concept of stochastic model class which includes
parametric uncertainty and prediction-error uncertainty
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 A stochastic model class of a system allows prior and posterior
robust predictive analysis

- predictions of all models in the model class are considered, each
weighted by its prior or posterior probability (Total Probability Thm)
- automatically treats sensitivity of predictions to the set of
parameter values

 Stochastic simulation methods make required calcs feasible:

Prior case - MCS (or Subset Simulation for very low probability
events)

Posterior case – MCMC methods with tempering (i.e. evolution to
high probability-content region of parameter space)

Robust System Analysis
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Posterior Comparison of Competing
Model Classes for a System

 Posterior probability of model class via Bayes’
Theorem is controlled by evidence given by the data

 Recently shown (Muto & Beck, 2007):

Log evidence
      =  Average (posterior mean) data fit of model class

            – Expected information gain (Shannon’s relative entropy)
   about the model parameters from the data

      =  Measure of consistency of the model class with the data
        – Penalty for more complex models that extract more   

    information from the data
Bayes’ Theorem for model classes automatically gives a
quantitative Principle of Parsimony in model building
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Final Remark

 We have applied UQ based on probability logic
using stochastic simulation tools to:
 modeling, analysis, identification and control of

uncertain dynamic systems subjected to uncertain
excitation

 Bayesian classification and regression with an
automatic relevance determination prior (e.g.
relevance vector machine)


